
 1

Klaytn Improvement Reserve Proposal
Improving the Read Performance of KV Database in

Klaytn

Date 2021.12.01

Prof. Hyeonsang Eom’s team
Department of Computer Science and Engineering

Seoul National University
Seoul, Korea (Rep. of)

Summary

As the scales of blockchain systems become larger, the amount of data processed in
the blockchain system increases exponentially. Due to a huge amount of data and lack
of improvement in the database system, issues of I/O performance degradation in such
a blockchain environment become serious. The types and characteristics of data
read/written in the blockchain system are different from those of other systems, and
therefore optimization that targets block processing is demanded.

In this proposal, we aim to solve the I/O performance degradation. To achieve this, we
plan to conduct two main tasks: analysis of I/O performance of KV (Key-Value)
database in Klaytn and design of an optimized algorithm and a data structure for Klaytn.
First, we plan to analyze the I/O performance of the database by using multiple types of
storage devices to identify performance bottleneck points, evaluate compaction
operations, and examine the data structure implemented in the database. Furthermore,
we will compare the current database with another database to find optimized features
that can be applied to the new design. Finally, we aim to propose our new design and
implementation of the database that effectively resolves the issues of read performance
bottleneck.

Team Introduction

This project is to be carried out by a team from Distributed Computing Systems Lab,
Department of Computer Science and Engineering, Seoul National University. This
team is led by prof. Hyeonsang Eom. The main research domain of the team includes
high performance storage/computing, blockchain, distributed computing, security, and
GPU-based acceleration.

Below is the detailed information of team members.

 2

Position Name Detail
Principal
Investigator

Eom, Hyeongsang B.S in Computer Engineering, Seoul National
University

M.S/Ph.D. in Computer Science, University of
Maryland at College Park, USA

Professor, Seoul National University
Co-Principal
Investigator

Kim, Sunggon B.S in Computer Science, University of Wisconsin -
Madison, USA

Ph. D in Computer Science and Engineering,
Seoul National University

Post-Doc researcher, Seoul National University
Investigator Bang, Jiwoo B.S in Computer Science, Seoul National University

Ph. D student, Seoul National University
Investigator Shin, Hyunil B.S in Computer Science, Seoul National University

Ph. D student, Seoul National University
Investigator Kim, Chungyong B.S in Computer Engineering, University of Seoul

Ph. D student in Computer Science and Engineering,
Seoul National University

Investigator Han, Jongbeen B.S in Computer Engineering, Hansung University
M.S in Computer Science and Engineering, Seoul

National University
Ph. D student, Seoul National University

Investigator Sung, Dong Kyu B.S in Computer Science, University of Minnesota
Twin Cities, USA

Ph. D student, Seoul National University
Investigator Song, Mansub B.S in Computer Engineering, Yeungnam University

Ph. D student, Seoul National University
Investigator Seo, Yunhyeong B.S in Computer Science, Kyungpook National

University
M.S student, Seoul National University

Investigator Ban, Jihoon B.S in Computer Science, Indiana University at
Bloomington, USA

Intern, Distributed Computing Systems Lab,
Seoul National University

Motivation

The blockchain has been widely adopted in many industries due to its secure,
decentralized manner. As the scales of blockchain systems become larger, many issues
are revealed. One of them is the I/O performance bottleneck, especially from blockchain
platforms such as Ethereum that store data regarding blocks into databases. Klaytn is a
global blockchain platform used by many highly reputable brands which is derived from
Ethereum. Therefore, it suffers from the same problem. As a high number of clients use
the blockchain system, a huge amount of data is generated. For processing
transactions, the system needs to write or read the corresponding data; due to the high
I/O rate on the database, it causes I/O performance degradation, especially that of read.

Ethereum uses a KV store as its database to provide data storage. A large number of
global block data entries across the platform are stored and retrieved in/from the

 3

internal KV storage. Since keys are hash values of data and alphabetical ordering of
hashed keys by the database cannot lead to keeping relevant data together, it causes
I/O performance issues. This even results in overall performance degradation of the
system. To resolve this issue, we need to examine the I/O characteristics of workloads
executed in the system and find out the tendency of write/read operations.

There are many attempts for optimizing KV stores for I/O performance in a general
context; however, there are only a few of them in the blockchain environment.

Raju et al. [1] suggests a modified data structure that reduces read and write
amplification while maintaining the capability of processing operations. In this study, the
researchers tried to resolve the issues on the inefficiency of databases in the blockchain
system. However, the impact of the work has not been evaluated or confirmed yet. In
other studies [2, 3], the researchers have tried to provide a querying layer in between
the application and database layers to enable efficient data retrieval. However, these
approaches do not address fundamental issues of how characteristics of workloads in
the blockchain environment impact the operation of data storage applications such as
that of LevelDB. Currently, there is lack of thorough examination and research on I/O
behavior in the blockchain system, and optimization of the I/O layer in platforms such as
Ethereum.

In this project, we propose to identify I/O patterns in the Klaytn environment that cause
inefficient operations on the database and study the impacts of functionalities of the KV
storage on the I/O behavior of blockchain applications in order to suggest an optimized
form of algorithm or data structure in the given blockchain environment. To do this, we
plan to analyze the I/O performance of Klaytn to identify performance bottleneck points
in the I/O layer and design an optimized algorithm and a data structure to improve the
performance.

Background

Ethereum uses a data structure called Merkle Patricia trie which provides
cryptographically authenticated data storage; data used as a key is hashed with
KECCAK 256 hash algorithm, and the corresponding data is encoded with Recursive
Length Prefix. Multiple tries are connected from fields in a block and each trie contains
data in a single category. There are several types of data that get stored in the tries.

State. State is data regarding accounts and their states. Since it must include all
accounts that participate in the system, there is one global trie that handles state data.
State trie contains KV pairs and the key is an account’s unique identifier called address.
The value for the pair has information such as the balance of the account.

Account Storage. It is additional data that is only relevant to the contract account
which is the one that gets deployed when smart contracts between users are created.
This information is saved into a trie called storage trie.

 4

Transaction. Transaction is cryptographically signed data generated by clients who
send and receive messages [2]. A single block contains multiple transactions and has
its own transaction trie. Each node in the trie stores information on the accounts of
sender and receiver of a transaction, the amount of value that has been transferred, and
so on.

Receipt. As proof of a transaction that has taken place, the transaction information is
encoded into a receipt [2]. It can be used as an index when searching for a specific
transaction. It is also stored in one called receipt trie.

In order to permanently write data from those tries and retrieve required information, an
internal database is used. LevelDB is an open-source KV store developed by Google,
and it is a backend data storage in Ethereum. It has been selected as the database
solution for several reasons such as its support for batch write, ordered mapping from
string keys to string values, and high speed.

However, some features of LevelDB such as maintaining multiple data levels and
alphabetical ordering of keys might lead to inefficient I/O operations and unnecessary
read or write amplification when blockchain workloads are executed.

Project Description

In Klaytn, tens of thousands of data items are batch-written into the database every few
seconds, which requires an enormous amount of data capacity. When blocks are
processed, the data already written in the database needs to be read in sequence.
However, data to be read is not guaranteed to be located near the data previously
searched for. Since a hash value is saved as a key, there is no relevance in terms of
order between keys even though the corresponding data can be related; for example,
the account data items that are involved in transactions of the same block have no
relevance in terms of key ordering.

In order to examine the characteristics and tendency of I/O operations in Klaytn, we
plan to carry out experiments to identify key factors that cause I/O performance
bottlenecks. In this project, we will perform two main tasks: analysis of I/O performance
in Klaytn and design of an optimized algorithm and a data structure for Klaytn.

1. Analysis of I/O performance in Klaytn

1-1. Identifying the performance bottleneck of Klaytn using high-performance devices

In LevelDB, compaction and flush operations are executed normally while KV pairs are
inserted or searched for in random due to hashing. It is important to explore whether
performance bottlenecks of I/O operations in Klaytn occur at the hardware level or
software level. In order to detect the possible impact of hardware performance, we will
use high performance storage devices such as NVMe SSD, and RAM Disk, which are

 5

theoretically better in performance (compared to SSD and HDD). In this way, we can
find out whether I/O performance is bounded by storage devices or CPU.

1-2. Evaluating the impact of compaction in LevelDB on I/O performance

Figure 1. LevelDB architecture

Compaction is a process where overlapping keys between levels are combined and
integrated into the lower level. As new data gets written to the database, old data gets
stored at a lower level, losing priority when searching takes place. This can lead to read
performance degradation.

In this task, we plan to identify the impact of the compaction operation in LevelDB,
particularly on the I/O performance of Klaytn. To do this, we will execute blockchain
workloads with a large number of PUTs and GETs in order to see how the performance
changes depending on different parameter settings that affect compaction operations in
the database. These parameters include DefaultCompactionTableSize,
DefaultCompactionTableSizeMultiplier, DefaultCompactionTotalSize, and
DefaultCompactionTotalSizeMultiplier.

1-3. Analyzing the data access pattern of LevelDB

As mentioned above, I/O operations for processing transactions are random because
keys are hashed, and therefore there is no relevance of key orderings. In order to
measure how many random reads and writes are in the system, we will utilize an I/O
tracing tool. Blktrace is a tool that traces procedures in the block I/O layer [8]. Using
blktrace, we are able to see how workloads in Klaytn access storage space used by
LevelDB. LevelDB has multiple levels and each level contains a different number of KV
pairs. We plan to analyze the write pattern to see how it affects the keys getting
compacted into lower levels and the read pattern to check how the write pattern affects
read performance.

In addition to analyzing data access, we plan to analyze the impact of horizontal
partitioning at levels. Min et al. improved the I/O performance of a database by
partitioning data space by users’ namespaces and maintaining per-namespace
dedicated LSM (Log-Structured Merge) trees for users [13]. In a similar way, we can
partition data space at levels and keep each partition in a separate zone of storage

 6

device such as ZNS (Zoned Namespace) SSD [14]; if ZNS SSDs are not available in
the Klaytn cloud environment, we may develop the same zone functionality in software.
Moreover, we plan to gather data elements that are most likely accessed in sequence
into the same zone. By partitioning data and maintaining zones, we believe that bloom
filters also can also be optimized by making each of them keep a smaller number of
data elements and thus reducing the search space on the storage device. Besides
bloom filters, Kipf et al. improved memory usage and query latency by providing
variable-sized fingerprints on PostgreSQL by an index structure called cuckoo index
[16]. The variable-sized fingerprint can use as smaller number of bits of fingerprints as
possible to represent set-membership so that it can reduce time spent on referencing
the index structures. We aim to examine the impact of such an index structure other
than bloom filter on the read performance of the database in Klaytn.

2. Designing an optimized algorithm and a data structure for Klaytn

For the second main task, we plan to investigate the underlying components of the KV
database such as its algorithm and data structure, and finally design an optimized
version of the database for Klaytn. To start the task, we will use RocksDB. RocksDB is
derived from LevelDB and supports additional features such as multi-threaded
compaction and memtable bloom filter [11]. Therefore, RocksDB can provide better
performance compared with LevelDB.

In terms of read performance, RocksDB is faster than LevelDB in the case of large-
sized data where a lot of query operations are executed. Kwon et al. [12] shows
differences of read performance between LevelDB and RocksDB. As shown in the
figure below, the databases achieve different degrees of performance in terms of OPS
(Operations per second) depending on the number of read operations. Comparing
RocksDB with LevelDB, RocksDB shows poor performance when the number of query
operations is very small; however, it exceeds LevelDB when the number of query
operations is over 10K.

Figure 2. Performance by the number of read operations

 7

This is because RocksDB uses atomic operation to modify reference counters for
memtable and SSTs (Sorted Strings Table) instead of mutex lock. Also, by using thread
local storage [17], RocksDB can remove locks in the read path. In Klaytn, there is over
150GB of data on each shard and the number of read operations in the system
increases as the size of the data becomes larger. Thus, Klaytn can benefit from using
RocksDB.

Moreover, Ethereum engine that uses RocksDB generally achieves better performance.
There are two main Ethereum clients. Geth uses LevelDB and Parity uses RocksDB as
their backend database engines [5]. According to the performance analysis done by
Parity community [4], Parity achieves about 3x better performance in block processing
which includes checking proof of work, transaction signatures, executing EVM codes,
building and updating tries, and so on.

Therefore, we may improve the functionalities of the KV database using RocksDB with
the analysis results from Task 1 and propose our optimized design of the KV database
for Klaytn. Klaytn is using LevelDB written in Go as the main storage engine. In our
project, we plan to use various storage engines such as RocksDB and WiredTiger, and
compare the performance impact of various storage engines. As Klaytn communicates
with storage engines by calling standard KV APIs (e.g., GET and PUT), we believe that
various storage engines can operate with Klaytn, and that it is possible to select and
use the one, the performance of which is the best.

2-1. Analyzing the data structure of KV database

In terms of read performance, the LSM tree-based data structure is not the best choice.
B+ tree is advantageous over range scan performance [6]. B+ tree is a widely used data
structure which is a variant of self-balancing trees. By balancing the tree when a new
insert, update, and delete request comes, B+ tree can have a high balancing overhead
but can have better read performance compared with LSM tree as the tree is balanced.
The balanced tree structure can lead to low overhead due to the sequential tree
traversal pattern during the GET operation. Thus, we are planning to evaluate the
impact of the B+ tree in the Klaytn environment.

MongoDB is a widely used and mature relational database system. To support
MongoDB, WiredTiger KV database is used as the default storage engine [15].
WiredTiger supports two types of data structures with varying characteristics to store KV
pairs, which are B+ tree and LSM tree. According to the performance comparison done
by the WiredTiger community, B+ tree achieves throughput from 1.5x to 3x larger in
read compared with LSM tree [7].

The goal of the project is to improve the read performance of the current database
implementation while maintaining the write performance as much as possible. A
previous study [6] shows that utilizing the LSM tree and B+ tree by transitioning
between the two helps achieve good performance when write and read occur. In this
task, we study and examine how the use of B+ tree data structure can improve the read

 8

performance in Klaytn and come up with an optimized form of data structure such as the
one which permits transitioning between LSM and B+ trees or dual implementation of
them.

2-2. Analyzing the compaction algorithm of KV database

In this task, we plan to analyze the compaction operations of RocksDB and suggest an
improved compaction algorithm that can lead to better I/O performance of the database
in Klaytn.

RocksDB provides several features such as multi-threaded compaction and compaction
filter. As explained above, a large number of data items are written every few seconds
in Klaytn. Thus, write operations can interrupt read operations. By using multi-threaded
compactions, time for writing data can be decreased and this can reduce the negative
effects of write on read. In addition, RocksDB supports a different type of compaction:
universal style compaction. Unlike level style compaction which is the basic compaction
type of LevelDB, universal compaction can order data in terms of timestamp, and thus
this can lead to different performance results in the Klaytn environment.

We aim to analyze compaction operations in RocksDB and the compaction algorithm
that is optimized for block processing in Klaytn using the evaluation results obtained in
Task 1-2.

2-3. Improving features based on data access pattern

From the analysis of the data access pattern of Klaytn workloads in Task 1-3, we plan to
improve the read performance by adding features such as caching. Analyzing and
modifying the compaction algorithm (Task 2-2) can improve the read performance by
adjusting the localities of data between levels. In addition, using caching features will
lead to a chance of improving the read performance depending on how often data is
accessed in the Klaytn environment. Recent studies show that caching helps efficient
I/O [9, 10]. Wu et al. optimized cache to save data, a pointer to a key, or a block of data
to reduce query latency depending on read tendency [9]. Wang et al. presented an
enhanced version of LSM tree that stores hot keys in separate spaces to reduce the
number of search operations in SST files [10]. We aim to evaluate caching features in
the LSM tree-based database and examine the advantages that can be applied to
Klaytn depending on the data access pattern.

2-4. Designing an improved version of database for read performance

Based on results from Tasks 2-1, 2-2, and 2-3, we aim to come up with the improved
forms of the algorithm, data structure, and features that are efficient in the Klaytn
environment. We believe that through analyzing the compaction algorithm and
characteristics of data structure such as LSM and B+ tree and data access pattern, we
will be able to optimize the current database implementation. In order to propose the
best design at the end of the project, we will refer to and utilize the test and analysis

 9

results from GroundX. Also, we will try to contribute to the open source with our new
design.

 10

Project Milestones and Schedule

Expected project duration: 12 months

Month Task Details Note
Start date
+ 1 month

Task 1-1 Identifying the performance bottleneck of
Klaytn using high performance storage
devices

- Analyze the I/O bottleneck of
LevelDB

- Identify whether hardware or
software is a bottleneck

Milestone 1

Start date
+ 2 months

Task 1-2 Evaluating the impact of compaction
algorithm of LevelDB on I/O performance

- Study how compaction algorithm
affects read performance

- Study how adjusting parameters
can change performance

Milestone 2

Start date
+ 3 months

Task 1-3 Analyzing the data access pattern of
LevelDB

- Use I/O traces or workloads from
Klaytn to analyze the data access
pattern

- Identify how write affects read in the
current database.

- Examine the impact of horizontal
partitioning with ZNS SSDs

- Improve the accuracy of bloom filter
- Utilize an improved index structure

to reduce query latency

Milestone 3

Start date
+ 5 months

Task 2-1 Analyzing the data structure of KV database
- Study the characteristics of LSM

tree and B+ tree in the database
implementation

- Suggest an improved form of data
structure

Milestone 4

Start date
+ 7 months

Task 2-2 Analyzing the compaction algorithm of KV
database

- Identify effective features in the
compaction algorithm of RocksDB
by comparing LevelDB and
RocksDB

Milestone 5

Start date
+ 9 months

Task 2-3 Improving features based on based on data
access pattern

- Suggest a caching feature to
improve read performance in Klaytn

Milestone 6

Start date
+ 12 months

Task 2-4 Designing an improved version of database
for read performance

- Combine the results from analysis
and study to propose optimized
forms of compaction algorithm, data
structure, and features

Milestone 7

 11

Key Deliverables

1. Technical reports
 Technical report describing our research steps and results for two main

tasks

2. Experiment results
 Data from analysis and experiments conducted in the project including

analysis on compaction algorithm, comparison experiments of LevelDB
and RocksDB, and so on.

3. Test code
 Code used for the analysis and experiments mentioned above.

4. Implementation details

 Implementation details including source code for our modified compaction
algorithm or data structure.

 12

Budget

1. Total budget

Item Unit Price (USD) Unit Total (USD)

Manpower 11,500 12 (months) 138,000
Server machine 20,000 1 20,000

NVMe SSD 2,000 4 8,400
DRAM 100 4

Travel expense 2,291.6 12 (weeks) 27,500
Meeting fee 245.7 35 (times) 8,600

VAT 27,000 N/A
(Total – VAT)*10%

27,000

Operating cost 27,000 N/A
(Total – VAT)*10%

27,000

Overhead cost 40,500 N/A
(Total – VAT)*15%

40,500

Total 297,000
Table 1. Total budget

2. Labor cost

Classification Monthly-wage

(USD)
Man-month Total (USD)

Manpower 11,500 50.904 138,000
Table 2. Total man-month

Name Monthly-wage

(USD)
Man-month/month Total (USD)

Eom, Hyeongsang 9,200 .217 2,000
Kim, Sunggon 4,000 .375 1,500
Bang, Jiwoo 2,500 .4 1,000
Shin, Hyunil 2,500 .4 1,000

Kim, Chungyong 2,500 .4 1,000
Han, Jongbeen 2,500 .4 1,000
Sung, Dong Kyu 2,500 .4 1,000
Song, Mansub 1,800 .55 1,000

Seo, Yunhyeong 1,800 .55 1,000
Ban, Jihoon 1,800 .55 1,000

Total 4.242 11,500
Table 3. Man-month by each member

 13

3. Travel expense

Classification Destination(s) Date Total (USD)
Travel expense - Lawrence Berkeley Laboratory –

Scientific Data Management
group,
Computational Research
Division

- Oracle
- Google

2022.06
-

2022.08

27,500

Table 4. Travel expense details

 14

Reference

[1] Raju, Pandian, et al. "mlsm: Making authenticated storage faster in ethereum." 10th USENIX
Workshop on Hot Topics in Storage and File Systems (HotStorage). 2018
[2] Li, Yang, et al. "EtherQL: a query layer for blockchain system." International Conference on Database
Systems for Advanced Applications. Springer, Cham, 2017
[3] Peng, Zhe, et al. "VQL: Providing query efficiency and data authenticity in blockchain systems." 2019
IEEE 35th International Conference on Data Engineering Workshops (ICDEW). IEEE, 2019
[4] https://www.parity.io/blog/performance-analysis
[5] Rouhani, Sara, and Ralph Deters. "Performance analysis of ethereum transactions in private
blockchain." 2017 8th IEEE International Conference on Software Engineering and Service Science
(ICSESS). IEEE, 2017
[6] Jain, Varun, James Lennon, and Harshita Gupta. "Lsm-trees and b-trees: The best of both worlds."
Proceedings of the 2019 International Conference on Management of Data. 2019
[7] https://github.com/wiredtiger/wiredtiger/wiki/Btree-vs-LSM
[8] Brunelle, Alan D. "Block i/o layer tracing: blktrace." HP, Gelato-Cupertino, CA, USA 57 (2006)
[9] Wu, Fenggang, et al. "AC-key: Adaptive caching for LSM-based key-value stores." 2020 USENIX
Annual Technical Conference (USENIX ATC). 2020
[10] Wang, Yi, Peiquan Jin, and Shouhong Wan. "HotKey-LSM: A Hotness-Aware LSM-Tree for Big Data
Storage." 2020 IEEE International Conference on Big Data (Big Data). IEEE, 2020
[11] https://github.com/facebook/rocksdb/wiki/Features-Not-in-LevelDB
[12] Kwon, Hyuk-Yoon. "Constructing a lightweight key-value store based on the windows native
features." Applied Sciences 9.18 (2019): 3801
[13] Min, Donghyun, and Youngjae Kim. "Isolating namespace and performance in key-value SSDs for
multi-tenant environments." Proceedings of the 13th ACM Workshop on Hot Topics in Storage and File
Systems. 2021
[14] https://zonedstorage.io/introduction/zns/
[15] https://docs.mongodb.com/manual/core/wiredtiger/
[16] Kipf, Andreas, et al. "Cuckoo index: a lightweight secondary index structure." Proceedings of the
VLDB Endowment 13.13 (2020): 3559-3572
[17] http://rocksdb.org/blog/2014/06/27/avoid-expensive-locks-in-get.html
[18] https://github.com/memsql/dbbench

