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Summary 
 
As the scales of blockchain systems become larger, the amount of data processed in 
the blockchain system increases exponentially. Due to a huge amount of data and lack 
of improvement in the database system, issues of I/O performance degradation in such 
a blockchain environment become serious. The types and characteristics of data 
read/written in the blockchain system are different from those of other systems, and 
therefore optimization that targets block processing is demanded. 
 
In this proposal, we aim to solve the I/O performance degradation. To achieve this, we 
plan to conduct two main tasks: analysis of I/O performance of KV (Key-Value) 
database in Klaytn and design of an optimized algorithm and a data structure for Klaytn. 
First, we plan to analyze the I/O performance of the database by using multiple types of 
storage devices to identify performance bottleneck points, evaluate compaction 
operations, and examine the data structure implemented in the database. Furthermore, 
we will compare the current database with another database to find optimized features 
that can be applied to the new design. Finally, we aim to propose our new design and 
implementation of the database that effectively resolves the issues of read performance 
bottleneck. 
 
 

Team Introduction 
 
This project is to be carried out by a team from Distributed Computing Systems Lab, 
Department of Computer Science and Engineering, Seoul National University. This 
team is led by prof. Hyeonsang Eom. The main research domain of the team includes 
high performance storage/computing, blockchain, distributed computing, security, and 
GPU-based acceleration.  
 
Below is the detailed information of team members. 
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Motivation 
 
The blockchain has been widely adopted in many industries due to its secure, 
decentralized manner. As the scales of blockchain systems become larger, many issues 
are revealed. One of them is the I/O performance bottleneck, especially from blockchain 
platforms such as Ethereum that store data regarding blocks into databases. Klaytn is a 
global blockchain platform used by many highly reputable brands which is derived from 
Ethereum. Therefore, it suffers from the same problem. As a high number of clients use 
the blockchain system, a huge amount of data is generated. For processing 
transactions, the system needs to write or read the corresponding data; due to the high 
I/O rate on the database, it causes I/O performance degradation, especially that of read. 
 
Ethereum uses a KV store as its database to provide data storage. A large number of 
global block data entries across the platform are stored and retrieved in/from the 
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internal KV storage. Since keys are hash values of data and alphabetical ordering of 
hashed keys by the database cannot lead to keeping relevant data together, it causes 
I/O performance issues. This even results in overall performance degradation of the 
system. To resolve this issue, we need to examine the I/O characteristics of workloads 
executed in the system and find out the tendency of write/read operations. 
 
There are many attempts for optimizing KV stores for I/O performance in a general 
context; however, there are only a few of them in the blockchain environment.  
 
Raju et al. [1] suggests a modified data structure that reduces read and write 
amplification while maintaining the capability of processing operations. In this study, the 
researchers tried to resolve the issues on the inefficiency of databases in the blockchain 
system. However, the impact of the work has not been evaluated or confirmed yet. In 
other studies [2, 3], the researchers have tried to provide a querying layer in between 
the application and database layers to enable efficient data retrieval. However, these 
approaches do not address fundamental issues of how characteristics of workloads in 
the blockchain environment impact the operation of data storage applications such as 
that of LevelDB. Currently, there is lack of thorough examination and research on I/O 
behavior in the blockchain system, and optimization of the I/O layer in platforms such as 
Ethereum. 
 
In this project, we propose to identify I/O patterns in the Klaytn environment that cause 
inefficient operations on the database and study the impacts of functionalities of the KV 
storage on the I/O behavior of blockchain applications in order to suggest an optimized 
form of algorithm or data structure in the given blockchain environment. To do this, we 
plan to analyze the I/O performance of Klaytn to identify performance bottleneck points 
in the I/O layer and design an optimized algorithm and a data structure to improve the 
performance. 
 

Background 
 
Ethereum uses a data structure called Merkle Patricia trie which provides 
cryptographically authenticated data storage; data used as a key is hashed with 
KECCAK 256 hash algorithm, and the corresponding data is encoded with Recursive 
Length Prefix. Multiple tries are connected from fields in a block and each trie contains 
data in a single category. There are several types of data that get stored in the tries.  
 
State. State is data regarding accounts and their states. Since it must include all 
accounts that participate in the system, there is one global trie that handles state data. 
State trie contains KV pairs and the key is an account’s unique identifier called address. 
The value for the pair has information such as the balance of the account. 
 
Account Storage. It is additional data that is only relevant to the contract account 
which is the one that gets deployed when smart contracts between users are created. 
This information is saved into a trie called storage trie.  
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Transaction.  Transaction is cryptographically signed data generated by clients who 
send and receive messages [2]. A single block contains multiple transactions and has 
its own transaction trie. Each node in the trie stores information on the accounts of 
sender and receiver of a transaction, the amount of value that has been transferred, and 
so on.  
 
Receipt. As proof of a transaction that has taken place, the transaction information is 
encoded into a receipt [2]. It can be used as an index when searching for a specific 
transaction. It is also stored in one called receipt trie. 
 
In order to permanently write data from those tries and retrieve required information, an 
internal database is used. LevelDB is an open-source KV store developed by Google, 
and it is a backend data storage in Ethereum. It has been selected as the database 
solution for several reasons such as its support for batch write, ordered mapping from 
string keys to string values, and high speed. 
 
However, some features of LevelDB such as maintaining multiple data levels and 
alphabetical ordering of keys might lead to inefficient I/O operations and unnecessary 
read or write amplification when blockchain workloads are executed. 
 

Project Description 
 
In Klaytn, tens of thousands of data items are batch-written into the database every few 
seconds, which requires an enormous amount of data capacity. When blocks are 
processed, the data already written in the database needs to be read in sequence. 
However, data to be read is not guaranteed to be located near the data previously 
searched for. Since a hash value is saved as a key, there is no relevance in terms of 
order between keys even though the corresponding data can be related; for example, 
the account data items that are involved in transactions of the same block have no 
relevance in terms of key ordering.  
 
In order to examine the characteristics and tendency of I/O operations in Klaytn, we 
plan to carry out experiments to identify key factors that cause I/O performance 
bottlenecks. In this project, we will perform two main tasks: analysis of I/O performance 
in Klaytn and design of an optimized algorithm and a data structure for Klaytn. 
 
1. Analysis of I/O performance in Klaytn 
 
1-1. Identifying the performance bottleneck of Klaytn using high-performance devices 
  
In LevelDB, compaction and flush operations are executed normally while KV pairs are 
inserted or searched for in random due to hashing. It is important to explore whether 
performance bottlenecks of I/O operations in Klaytn occur at the hardware level or 
software level. In order to detect the possible impact of hardware performance, we will 
use high performance storage devices such as NVMe SSD, and RAM Disk, which are 
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theoretically better in performance (compared to SSD and HDD). In this way, we can 
find out whether I/O performance is bounded by storage devices or CPU. 
 
1-2. Evaluating the impact of compaction in LevelDB on I/O performance 
 

 
Figure 1. LevelDB architecture 

 
Compaction is a process where overlapping keys between levels are combined and 
integrated into the lower level. As new data gets written to the database, old data gets 
stored at a lower level, losing priority when searching takes place. This can lead to read 
performance degradation.  
 
In this task, we plan to identify the impact of the compaction operation in LevelDB, 
particularly on the I/O performance of Klaytn. To do this, we will execute blockchain 
workloads with a large number of PUTs and GETs in order to see how the performance 
changes depending on different parameter settings that affect compaction operations in 
the database. These parameters include DefaultCompactionTableSize,  
DefaultCompactionTableSizeMultiplier, DefaultCompactionTotalSize, and 
DefaultCompactionTotalSizeMultiplier. 
 
1-3. Analyzing the data access pattern of LevelDB 
 
As mentioned above, I/O operations for processing transactions are random because 
keys are hashed, and therefore there is no relevance of key orderings. In order to 
measure how many random reads and writes are in the system, we will utilize an I/O 
tracing tool. Blktrace is a tool that traces procedures in the block I/O layer [8]. Using 
blktrace, we are able to see how workloads in Klaytn access storage space used by 
LevelDB. LevelDB has multiple levels and each level contains a different number of KV 
pairs. We plan to analyze the write pattern to see how it affects the keys getting 
compacted into lower levels and the read pattern to check how the write pattern affects 
read performance.  
 
In addition to analyzing data access, we plan to analyze the impact of horizontal 
partitioning at levels. Min et al. improved the I/O performance of a database by 
partitioning data space by users’ namespaces and maintaining per-namespace 
dedicated LSM (Log-Structured Merge) trees for users [13]. In a similar way, we can 
partition data space at levels and keep each partition in a separate zone of storage 
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device such as ZNS (Zoned Namespace) SSD [14]; if ZNS SSDs are not available in 
the Klaytn cloud environment, we may develop the same zone functionality in software. 
Moreover, we plan to gather data elements that are most likely accessed in sequence 
into the same zone. By partitioning data and maintaining zones, we believe that bloom 
filters also can also be optimized by making each of them keep a smaller number of 
data elements and thus reducing the search space on the storage device. Besides 
bloom filters, Kipf et al. improved memory usage and query latency by providing 
variable-sized fingerprints on PostgreSQL by an index structure called cuckoo index 
[16]. The variable-sized fingerprint can use as smaller number of bits of fingerprints as 
possible to represent set-membership so that it can reduce time spent on referencing 
the index structures. We aim to examine the impact of such an index structure other 
than bloom filter on the read performance of the database in Klaytn. 
 
2. Designing an optimized algorithm and a data structure for Klaytn 
 
For the second main task, we plan to investigate the underlying components of the KV 
database such as its algorithm and data structure, and finally design an optimized 
version of the database for Klaytn. To start the task, we will use RocksDB. RocksDB is 
derived from LevelDB and supports additional features such as multi-threaded 
compaction and memtable bloom filter [11]. Therefore, RocksDB can provide better 
performance compared with LevelDB. 
 
In terms of read performance, RocksDB is faster than LevelDB in the case of large-
sized data where a lot of query operations are executed. Kwon et al. [12] shows 
differences of read performance between LevelDB and RocksDB. As shown in the 
figure below, the databases achieve different degrees of performance in terms of OPS 
(Operations per second) depending on the number of read operations. Comparing 
RocksDB with LevelDB, RocksDB shows poor performance when the number of query 
operations is very small; however, it exceeds LevelDB when the number of query 
operations is over 10K.  
 

 
  

Figure 2. Performance by the number of read operations 
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This is because RocksDB uses atomic operation to modify reference counters for 
memtable and SSTs (Sorted Strings Table) instead of mutex lock. Also, by using thread 
local storage [17], RocksDB can remove locks in the read path. In Klaytn, there is over 
150GB of data on each shard and the number of read operations in the system 
increases as the size of the data becomes larger. Thus, Klaytn can benefit from using 
RocksDB. 
 
Moreover, Ethereum engine that uses RocksDB generally achieves better performance. 
There are two main Ethereum clients. Geth uses LevelDB and Parity uses RocksDB as 
their backend database engines [5]. According to the performance analysis done by 
Parity community [4], Parity achieves about 3x better performance in block processing 
which includes checking proof of work, transaction signatures, executing EVM codes, 
building and updating tries, and so on.  
 
Therefore, we may improve the functionalities of the KV database using RocksDB with 
the analysis results from Task 1 and propose our optimized design of the KV database 
for Klaytn. Klaytn is using LevelDB written in Go as the main storage engine. In our 
project, we plan to use various storage engines such as RocksDB and WiredTiger, and 
compare the performance impact of various storage engines. As Klaytn communicates 
with storage engines by calling standard KV APIs (e.g., GET and PUT), we believe that 
various storage engines can operate with Klaytn, and that it is possible to select and 
use the one, the performance of which is the best. 
 
2-1. Analyzing the data structure of KV database 
 
In terms of read performance, the LSM tree-based data structure is not the best choice. 
B+ tree is advantageous over range scan performance [6]. B+ tree is a widely used data 
structure which is a variant of self-balancing trees. By balancing the tree when a new 
insert, update, and delete request comes, B+ tree can have a high balancing overhead 
but can have better read performance compared with LSM tree as the tree is balanced. 
The balanced tree structure can lead to low overhead due to the sequential tree 
traversal pattern during the GET operation. Thus, we are planning to evaluate the 
impact of the B+ tree in the Klaytn environment. 
 
MongoDB is a widely used and mature relational database system. To support 
MongoDB, WiredTiger KV database is used as the default storage engine [15]. 
WiredTiger supports two types of data structures with varying characteristics to store KV 
pairs, which are B+ tree and LSM tree. According to the performance comparison done 
by the WiredTiger community, B+ tree achieves throughput from 1.5x to 3x larger in 
read compared with LSM tree [7].  
 
The goal of the project is to improve the read performance of the current database 
implementation while maintaining the write performance as much as possible. A 
previous study [6] shows that utilizing the LSM tree and B+ tree by transitioning 
between the two helps achieve good performance when write and read occur. In this 
task, we study and examine how the use of B+ tree data structure can improve the read 
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performance in Klaytn and come up with an optimized form of data structure such as the 
one which permits transitioning between LSM and B+ trees or dual implementation of 
them.  
 
2-2. Analyzing the compaction algorithm of KV database 
 
In this task, we plan to analyze the compaction operations of RocksDB and suggest an 
improved compaction algorithm that can lead to better I/O performance of the database 
in Klaytn. 
 
RocksDB provides several features such as multi-threaded compaction and compaction 
filter. As explained above, a large number of data items are written every few seconds 
in Klaytn. Thus, write operations can interrupt read operations. By using multi-threaded 
compactions, time for writing data can be decreased and this can reduce the negative 
effects of write on read. In addition, RocksDB supports a different type of compaction: 
universal style compaction. Unlike level style compaction which is the basic compaction 
type of LevelDB, universal compaction can order data in terms of timestamp, and thus 
this can lead to different performance results in the Klaytn environment. 
 
We aim to analyze compaction operations in RocksDB and the compaction algorithm 
that is optimized for block processing in Klaytn using the evaluation results obtained in 
Task 1-2. 
 
2-3. Improving features based on data access pattern 
 
From the analysis of the data access pattern of Klaytn workloads in Task 1-3, we plan to 
improve the read performance by adding features such as caching. Analyzing and 
modifying the compaction algorithm (Task 2-2) can improve the read performance by 
adjusting the localities of data between levels. In addition, using caching features will 
lead to a chance of improving the read performance depending on how often data is 
accessed in the Klaytn environment. Recent studies show that caching helps efficient 
I/O [9, 10]. Wu et al. optimized cache to save data, a pointer to a key, or a block of data 
to reduce query latency depending on read tendency [9]. Wang et al. presented an 
enhanced version of LSM tree that stores hot keys in separate spaces to reduce the 
number of search operations in SST files [10]. We aim to evaluate caching features in 
the LSM tree-based database and examine the advantages that can be applied to 
Klaytn depending on the data access pattern. 
 
2-4. Designing an improved version of database for read performance 
 
Based on results from Tasks 2-1, 2-2, and 2-3, we aim to come up with the improved 
forms of the algorithm, data structure, and features that are efficient in the Klaytn 
environment. We believe that through analyzing the compaction algorithm and 
characteristics of data structure such as LSM and B+ tree and data access pattern, we 
will be able to optimize the current database implementation. In order to propose the 
best design at the end of the project, we will refer to and utilize the test and analysis 
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results from GroundX. Also, we will try to contribute to the open source with our new 
design. 
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Project Milestones and Schedule 
 
Expected project duration: 12 months 

Month Task Details Note 
Start date  
+ 1 month 

Task 1-1 Identifying the performance bottleneck of 
Klaytn using high performance storage 
devices 

- Analyze the I/O bottleneck of 
LevelDB 

- Identify whether hardware or 
software is a bottleneck 

Milestone 1 

Start date  
+ 2 months 

Task 1-2 Evaluating the impact of compaction 
algorithm of LevelDB on I/O performance 

- Study how compaction algorithm 
affects read performance 

- Study how adjusting parameters 
can change performance 

Milestone 2 

Start date  
+ 3 months 

Task 1-3 Analyzing the data access pattern of 
LevelDB 

- Use I/O traces or workloads from 
Klaytn to analyze the data access 
pattern 

- Identify how write affects read in the 
current database. 

- Examine the impact of horizontal 
partitioning with ZNS SSDs 

- Improve the accuracy of bloom filter 
- Utilize an improved index structure 

to reduce query latency 

Milestone 3 

Start date  
+ 5 months 

Task 2-1 Analyzing the data structure of KV database 
- Study the characteristics of LSM 

tree and B+ tree in the database 
implementation 

- Suggest an improved form of data 
structure  

Milestone 4 

Start date  
+ 7 months 

Task 2-2 Analyzing the compaction algorithm of KV 
database 

- Identify effective features in the 
compaction algorithm of RocksDB 
by comparing LevelDB and 
RocksDB 

Milestone 5 

Start date  
+ 9 months 

Task 2-3 Improving features based on based on data 
access pattern 

- Suggest a caching feature to 
improve read performance in Klaytn  

Milestone 6 
 

Start date  
+ 12 months 

Task 2-4 Designing an improved version of database 
for read performance 

- Combine the results from analysis 
and study to propose optimized 
forms of compaction algorithm, data 
structure, and features 

Milestone 7 
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Key Deliverables 
 

1. Technical reports 
 Technical report describing our research steps and results for two main 

tasks 
 

2. Experiment results 
 Data from analysis and experiments conducted in the project including 

analysis on compaction algorithm, comparison experiments of LevelDB 
and RocksDB, and so on. 
 

3. Test code 
 Code used for the analysis and experiments mentioned above.  

 
4. Implementation details 

 Implementation details including source code for our modified compaction 
algorithm or data structure. 

 

 
  



 12 

Budget 
 
1. Total budget 
 
Item Unit Price (USD) Unit Total (USD) 

Manpower 11,500 12 (months) 138,000 
Server machine 20,000 1 20,000 

NVMe SSD 2,000 4 8,400 
DRAM 100 4 

Travel expense 2,291.6 12 (weeks) 27,500 
Meeting fee 245.7 35 (times) 8,600 

VAT 27,000 N/A 
(Total – VAT)*10% 

27,000 

Operating cost 27,000 N/A 
(Total – VAT)*10% 

27,000 

Overhead cost 40,500 N/A 
(Total – VAT)*15% 

40,500 

Total   297,000 
Table 1. Total budget 

2. Labor cost 
 
Classification Monthly-wage 

(USD) 
Man-month Total (USD) 

Manpower 11,500 50.904 138,000 
Table 2. Total man-month 

 
Name Monthly-wage 

(USD) 
Man-month/month Total (USD) 

Eom, Hyeongsang 9,200 .217 2,000 
Kim, Sunggon 4,000 .375 1,500 
Bang, Jiwoo 2,500 .4 1,000 
Shin, Hyunil 2,500 .4 1,000 

Kim, Chungyong 2,500 .4 1,000 
Han, Jongbeen 2,500 .4 1,000 
Sung, Dong Kyu 2,500 .4 1,000 
Song, Mansub 1,800 .55 1,000 

Seo, Yunhyeong 1,800 .55 1,000 
Ban, Jihoon 1,800 .55 1,000 

Total  4.242 11,500 
Table 3. Man-month by each member 
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3. Travel expense 
 
Classification Destination(s) Date Total (USD) 
Travel expense - Lawrence Berkeley Laboratory – 

Scientific Data Management 
group, 
Computational Research 
Division 

- Oracle 
- Google 

2022.06 
- 

2022.08 

27,500 

Table 4. Travel expense details 
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